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Abstract

We propose a point-based neural rendering pipeline de-
veloped for real time applications in the virtual reality (VR).
We use point clouds as our representation of the human
models and propose an adaptive shader to render the point
clouds in Unity. Through Unity’s neural network inference
library we pass the rendered images through a neural net-
work to enhance the output. The main focus lies in making
the pipeline as compact as possible such that real time in-
teractions in VR are possible. Our experiments show that
our framework can interactively (∼ 15 FPS) render both
static and dynamic human pointcloud with good rendering
quality and consistency.

Point Cloud Rendering with Unity
(Adaptive Shader)

Neural Enhancement
with Barracuda Oculus Quest 2

Input VR Application Neural Rendering Output

Figure 1. Point-based neural human rendering pipeline for VR

1. Introduction
Generating photorealistic and high-quality imagery for

humans in an interactive time frame is a problem that has
attracted much interest and development from both the com-
puter graphics and computer vision community [24, 25].
Successfully tackling this problem can enable exciting ap-
plications, such as immersive virtual gaming and entertain-
ment experiences and interactive telepresence. However,
rendering photorealistic humans in real-time faces many
challenges. Firstly, achieving photorealism for humans is

particularly challenging due to the “uncanny valley” ef-
fect [12], where even small distinctions in the generated
imagery can cause negative perceptual evaluation when ren-
dering humans compared to other objects. Secondly, pho-
torealistic real-time rendering is a challenging problem in
computer graphics. Traditional methods rely on explicit, of-
ten physically-based, modeling for geometry, material, and
light transport in a scene. [26, 46]. These methods require
high-quality geometry model information, such as high-
resolution mesh and texture maps. Additionally, directly
solving for light transport and global illumination using an
explicit modeling algorithm such as ray tracing is slow to
converge and computationally intensive, let alone capable
of real-time applications.

Recently, the new approach of using neural rendering
in rendering photorealistic imagery, including humans, has
been marked by tremendous progress [38, 39]. Neural ren-
dering uses a data-driven approach to model scenes from
high-quality image samples. Current work in neural ren-
dering has already achieved photorealism in areas chal-
lenging for traditional graphics pipelines. In the realm of
photorealistic human rendering, SIMPLpix [30] builds on
pix2pix [16, 43], a generative adversarial network (GAN)
[13] driven image-to-image translation model, to achieve
realistic texture coloring of the human body, while main-
taining the flexibility and user controllability of using an ex-
plicit 3D human mesh. Additionally, there have been devel-
oped for point cloud based neural rendering models [4] that
demonstrated great detail, photorealistic results of human
rendering in real-time. Compared to the traditional mesh
3D representation, point cloud data does not require sur-
face estimation and can be easily obtained from consumer-
grade 3D scanners. It is also shown that point cloud based
approaches can achieve compelling results on thin regions
of the 3D object, such as foliage and hair. The work
LookinGood [24] also uses a neural network to refine ini-
tial data obtained from the low-resolution point cloud and
texture data in real-time to achieve realistic human render-
ing. These promising developments lead us in the direction
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of combining the use of a point cloud representation of a
human with leveraging deep neural architectures as a re-
finement module.

Our project aims to investigate the efficacy of rendering
virtual 3D humans interactively in a VR setting. Specifi-
cally, we would like to leverage point cloud based meth-
ods for our human geometry representation and rendering
model. Our pipeline takes a human model’s sparse 3D point
cloud and visualizes it in a virtual space. We then use neu-
ral rendering as an image-to-image enhancement module
to generate a refined human rendering as our output. We
leverage Unity, a popular development platform for graph-
ics and VR applications, to set up our virtual scenes and run
our neural rendering models as a post-processing pipeline.
We leverage current point cloud rendering libraries in Unity
(Pcx) and enable an adaptive point cloud rendering strat-
egy using our custom geometry shader. We designed our
network architecture to be lightweight [3] while taking spe-
cial care of our objective function design and data gener-
ation pipeline. These decisions allow us to render virtual
humans with good quality and consistency. We tested our
framework on various input data, including static humans,
dynamic humans, and scenes with multiple humans. Our
results in VR are promising in terms of quality, consistency,
and speed. Furthermore, our pipeline can visualize the ren-
dering results interactively (∼ 15 FPS) in an Oculus Quest
2 VR headset.

2. Related Work

2.1. Point-based Rendering

There has been a long history in computer graphics of us-
ing point-based primitives as 3D representation [22]. Com-
pared to other traditional geometry primitives, such as tri-
angle meshes, point-based representations do not encode
connectivity or adjacency of the 3D points. Although this
lack of surface information can lead to challenges in the
rendering process, it also makes point-based primitives ex-
tremely flexible and, more importantly, friendly to data cap-
tured from modern 3D scanning devices. Therefore, point-
based primitives are very useful for real-life interactive ap-
plications. Over the years, numerous developments in point
cloud data structure and rendering techniques, such as sur-
face splatting, have been proposed to improve the rendering
quality and efficiency of point cloud data [28,49]. Recently,
there has been increasing interest in using deep neural archi-
tectures to achieve photorealistic rendering of point-based
scenes. Aliev et al. [4] encodes the local geometry and ap-
pearance of points using learnable neural descriptors and
achieves realistic results from commodity RGB-D scanning
devices. There is also development on leveraging point
cloud data obtained from structure from motion pipelines
and taking advantage of high dimensional SIFT features for

realistic rendering [29].

2.2. Image-to-image Neural Translation

From a computer graphics viewpoint, achieving differ-
ent rendering effects requires complex scene modeling with
high-fidelity meshes, realistic light sources, physical-based
materials, etc [6]. Modern rendering techniques such as ray
tracing can provide more photorealistic results than the tra-
ditional pipeline, while they are computationally heavy and
hard to achieve real-time performance without a powerful
GPU. On the other hand, from a computer vision view-
point, one can bypass the scene modeling step and try to
solve the rendering problem as a pure learning-based ap-
proach, which directly performs 2D-to-2D image transla-
tion through deep neural networks. For instance, semantic
photosynthesis takes the input of a semantic map and gener-
ates the photorealistic image accordingly [7, 16, 44], which
model the synthesis process using Convolutional Neural
Networks (CNNs) with the GAN loss. Another task that
leverages the image-to-image translation is the style trans-
fer, which takes a raw input image and converts it to the
given style. Early methods train one single network for
transferring a specific scale [11, 40, 41], while more recent
works are capable of targeting multiple styles in a single
model [8, 23].

2.3. Real-time Rendering in VR

Unlike normal neural network, real-time neural net-
work has to be designed specifically to optimize run-time
speed for user applications. In order to run neural net-
work on mobile devices which possess limited computing
power, MobileNetV2 [33] proposed mobile nets with in-
verted residual connection and depth-wise separable con-
volutions (3x3 convolutions followed by 1x1 point-wise
convolution). However, during implementation, the re-
peating Relu6 layer in the building block is not supported
by Barracuda [37] , making real-time inferring using Mo-
bileNetV2 hard to be implemented on VR devices natively.
Other neural network architectures on edge devices include:
MobileNetV3 [15] FBNet [47], and EfficientNet [35].

Virtual Reality (VR) has gained attention in various
fields in the past few decades. Using VR device, humans
can maximize their immersive experience through their eyes
in the virtual world. At the same time, the extremely high
requirement for display resolution, refresh rate, and stereo-
scopic images rendering pose challenges for VR to perme-
ate the industry and consumer market. To solve the ren-
dering issue in VR, foveated rendering methods using eye
tracking like [14] are gaining popularity. Additionally, Re-
search using neural networks to get decoded foveated im-
ages relieves the latency issue in VR rendering [19]. For
specific tasks of rendering in VR, the key point lies in clean
and efficient code design and architecture.

2



Figure 2. Graphics pipeline. Source: Vulkan tutorial [27]

3. Method
3.1. Adaptive Shader

Graphics rendering pipeline in Unity To construct an
efficient pipeline for rendering, it is essential to understand
the graphics pipeline in Unity. For a standard graphical task,
the CPU firstly makes a draw call to the GPU. Afterwards
the vertex shader gets called. In vertex shader, vertex in-
formation, including local position, UV coordinate, color,
and normal, are transformed from local coordinate system
to world coordinate system. Those become the input for the
fragment shader. In fragment shader, shading information
for fragments is calculated based on the color and normal
information. Shading tests and z-buffering tests are used to
render visibility of vertices and faces.

Geometry shader is an optional shader that generates
additional geometric primitives between vertex shader and
fragment shader. In the scenario of rendering humans in
VR, observers are allowed to freely explore the scene. At
close distance, point clouds become sparse and sometimes
hard to recognize. As a result, preprocessing of point clouds
is necessary. Geometry shader takes as input a set of ver-
tices and outputs a set of new primitives. The benefits of ge-
ometry shader are: With the help of GPU, geometry shader
is very efficient in processing vertices in graphics pipeline.
And it is easy to control and intuitive to modify the parame-
ters of the geometry shader. With geometry shader, the full
graphics pipeline before entering neural rendering is shown
in Figure 2.

In our case, each point in the point cloud is reshaped as a
square facing its normal. In geometry shader, the point size
can be controlled adaptively to decrease visual artifacts. In-
tuitively, the size of a point can be set inversely proportional
to the distance between camera and object point:

sizep =
λ

distcp
(1)

in which p is the independent point in the point cloud, distcp
is camera-to-point distance. However, this relation might
not satisfy all distances needed. To figure out the best rela-

tionship between size of point cloud and camera-to-point
distance, human-judged best point sizes at different dis-
tances are recorded. Those one-to-one mappings are fitted
to a polynomial and clamped in a range. The final hand-
crafted relationship between point cloud size and camera-
to-point distance is as follows:

distcp = clamp(distcp, a, b) (2)

sizep = c+ d · distcp + e · dist2cp (3)

a,b indicate the lower bound and upper bound for clamping.
c,d,e are derived from the fitted polynomial. This serves as
the most important function in determining the final point
size.

Algorithm 1 Forward Pass

for each vertex in Vertex Buffer do
Get point size based on camera-to-object distance.
Obtain the normal of this vertex in world coordinate.
Get the vertices of the square based on camera-to-

object distance and world normal.
end for
for each fragment in Fragment Buffer do

Get Ambient light strength from light source.
Get Specular parameter based on worldNormal and

halfVector.
Get Diffuse parameter from worldNormal world-

LighrDirection.
return Ambient + Specular + Diffuse

end for

Lastly in graphics pipeline, a view-dependent shadow ef-
fect is achieved through Blinn-Phong shading [5] and one
additional shadow pass. The source code for shadow pass is
from Pcx. These effects visualize shadows and occlusion in
the model. The pseudocode of the complete forward pass is
in 1

3.2. Neural Rendering

3.2.1 Data generation

We use the PyTorch3D library [31] to generate our datasets.
PyTorch3D is an Our goal is to take sparse point cloud input
and render dense, high-quality output through our neural
network. In addition, we would also like the human color to
be consistent when viewed from different depths. To ad-
dress this, we use our custom PyTorch3D adaptive point
cloud shader to render training and target images. The im-
plementation of the PyTorch3D shader follows the same as
described in the previous geometry shader section. Specif-
ically, we also use equation (1) to determine our point size.
Our PyTorch3D shader is efficient since it leverages the
PyTorch backend, enabling batched processing on multiple
images and camera poses through the GPU.
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Figure 3. Overview of our model. The numbers in the shapes indi-
cate the number of output channels we tried to keep them as small
as possible to achieve real time performance. Blue arrows indicate
Skip connections, differently colored shapes indicate different op-
erations.

3.2.2 Network Architecture

The choice of the network was limited through the sup-
ported operations in Barracuda [37] and an export of the
model to ONNX opset version 9 [36]. Our network is based
on [17] using Instance Normalization as introduced in [42]
and the used implementation can be found under [3]. The
architecture is fully supported by Barracuda. Given the ar-
chitecture we reduced the channel numbers to make the net-
work compacter, an overview can be seen in Figure 3.

The network follows a U-Net [32] style architecture,
with the goal of learning as many relevant features in the
image as possible. An in depth description can be found in
Table 1.

For training, we use 5880 image pairs of three different
people rendered from different depths, elevations and az-
imuth angles. We use Adam [20] as our optimizer.

3.2.3 Loss

The output of the network IX should yield a perceptually
similar result to the ground truth Igt. For this we mainly
rely on losses that are based on features of pretrained net-
works on ImageNet [10] as these come close to the percep-
tion of humans as discussed in [18, 48]. Our used loss is a
combination of a Learned Perceptual Image Patch Similar-
ity (LPIPS) [48] and a feature based distance on a pretrained
VGG-16 [34] network as introduced in [18].

For the LPIPS part, we use the provided implementation
of the authors [48]. The variant we use is based on the Alex-
Net [21]. The second part is based on a pretrained VGG-
16 network. The loss directly follows from SMPLpix and
minimizes the L1 loss between VGG activations [30]. The
final loss is just a combination of the two:

L = λ1 LLPIPS(Igt, IX) + λ2 LV GG(Igt, IX).

Layer Filters Kernel Stride Out
Input Image - - - I
ConvLayer(I) 8 9 1 Y1
ConvLayer(Y1) 16 3 2 Y2
ConvLayer(Y2) 32 3 2 Y3
Residual Block(Y3) 32 3 1 X
UpLayer(X + Y3) 16 3 1 X
UpLayer(X + Y2) 8 3 1 X
Refl. Padd(X + Y1) - - - X
Convolution(X) 3 9 x 9 1 x 1 Y

Description of Custom Layers
ConvLayer(X) F K S
Refl. Padd(X) - - - X
Convolution(X) F K x K S x S X
Instance Norm(X) F - - X
ReLU(X) - - - Y
UpLayer(X) F K S
Interpolate(X) - - - X
ConvLayer(X) F K S Y

Table 1. In detail description of the architecture. The input image
has format H x W x 3, same as the generated output. The Reflec-
tion Padding (Refl. Padd) has as padding parameter K // 2, where
K is the kernel size of the following Convolution and // represents
integer division. The Residual Block gets repeated five times.

The parameters λ1 and λ2 indicate the importance between
the losses, we set λ1 = λ2 = 1.

We also looked at the VGG-19 based loss used in Neural
Point-Based Graphics (NPBG) [4]. However this did not
yield better results as we will discuss in Section 4.

3.3. Framework

This project aims to develop a full pipeline for render-
ing photo-realistic humans in VR devices from a sparse
point cloud representation, allowing interactive real-time
user experience from novel view points. Such a pipeline
requires the integration of the game engine, neural infer-
ence package, and the VR hardware altogether. We choose
Unity engine as our development platform to build the VR
application, which provides rich support for 3D and VR
projects. We extend the existing point cloud rendering
shader Pcx with the adaptive point size function for the Win-
dows platform. To introduce neural network inference into
Unity, we leverage the Barracuda package [37] from Unity-
Technologies to perform neural rendering via a pretrained
network. Oculus Quest 2 is selected as a deployment device
which is one of the most popular VR headsets with both
all-in-one mode (compute onboard) and Oculus-link mode
(compute on PC).
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Figure 4. Point-based neural human rendering pipeline

3.3.1 Unity and Shader

Unity is one of the most widely used game engines for 3D
gaming, architecture, and engineering. We use the XR In-
teraction Toolkit [2] to support the communication with our
VR device, which provides a high-level, component-based
interaction system. Processing the input information from
the VR device, we can obtain the VR camera view points,
local motions, and controller events easily through XR In-
teraction Toolkit and having the view-dependent rendering.

Shaders are a powerful tool in Unity that gains its effi-
ciency through the parallel execution on GPU. Besides its
original usage of calculating the color of each pixel ren-
dered based on the lighting input and the material configu-
ration, we can also encode the customized information and
operation into the shader and perform the rendering via pre-
computed features. It is also possible to perform the simple
network forward pass through Shader and RenderTexture.

3.3.2 Barracuda

We use the Barracuda package [37], a lightweight cross-
platform neural network inference library for Unity, to per-
form neural enhancement as a post-processing step in our
VR application. Given a pretrained neural network in
ONNX format, Barracuda can perform neural network in-
ference on both the CPU and GPU platforms. To run neu-
ral enhancement, we first store the current rendered out-
put from Unity into a RenderTexture object and crop the
original input from 1600 × 1600 to 720 × 720. The crop-
ping operation not only eliminates the distortion effect at
the margin but also helps speed up the inference process-
ing. The cropped texture image is passed through the Bar-
racuda worker, enhanced by our pretrained neural network
from sparse point projection to photorealistic images, and
pasted back to the output RenderTexture object.

3.3.3 Pipeline

The whole pipeline for our point-based neural human ren-
dering in VR is shown in Figure 4. Given the point cloud,
we pass the information of point position, color, and option-

ally normal into Unity. Our adaptive shader takes the per-
point features, and the real-time camera poses from the VR
device and computes the distance between each point to the
camera center, which will be used to adjust the size and ori-
entation of the rendered point adaptively. In the neural en-
hancing stage, we first load the pretrained network from the
ONNX file into Barracuda and process the adaptive shader’s
output with the cropping, downsampling, and color map-
ping pre-processing. After neural model inference, the re-
sult is post-processed accordingly and pasted back to the
Unity renderer’s output, which will be displayed in the VR
device.

Besides the human-specific rendering, our pipeline can
be easily extended to the general point cloud scene with
other neural enhancing effects, e.g., style transfer.

3.4. Implementation

We develop our application based on Unity 3D and build
it for both Windows (run on PC) and Android (run on VR)
platforms. DirectX11 and Vulkan graphics API are used
on two platforms, respectively. When running on a PC,
Oculus-link is used to communicate between the Windows
app and Oculus device. We also design a user-interface for
choosing different point clouds, loading the pretrained net-
work, and manually adjusting the point size. Our adaptive
shader can run at around 120FPS on a laptop with Nvidia
GTX 1660Ti and 40FPS on native Oculus. With the neu-
ral rendering, we can achieve about 17FPS and 2FPS on a
laptop and Oculus.

4. Experiments

4.1. Datasets

We use two sets of human source models to generate
our datasets. First, we use a dense point cloud with 1M
points obtained from 3D scans of a human. For input data,
we render 10% of all points randomly. For output data,
we render the full point cloud. Additionally, we use hu-
man models from RenderPeople.com [1], which provides
high-resolution human meshes obtained from 3D scans, in-
cluding dynamic human meshes. For input, we sample
100k points from the mesh surface using weighted random
sampling based on the mesh triangle area and render the
point cloud. For output, we render the full mesh data. We
use two static human mesh data (denoted as ”Dennis” and
”Mei”), as well as one dynamic mesh sequence (denoted
as ”Dance”). To address color consistency with respect to
depth, we capture our data from 4 different camera dis-
tances to the object: 1m, 2m, 3m, and 6m. For each depth
value, we render 500 images from random camera elevation
and azimuth angles.
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(a) High quality point cloud data

(b) RenderPeople Human data

(c) Example camera placement

Figure 5. Example images of our dataset at different depths. no-
tice that our adaptive shader can adjust point size with respect to
camera depth

4.2. Adaptive Shader

In this section runtime performance and visual effects of
the adaptive shader is dicussed.

4.2.1 Frame rate comparison

During speed test, different objects are examined in VR and
the corresponding refresh rates are recorded. The test is
run on desktop Nvidia GTX 1660Ti in Unity. To under-
stand program speed with different visual effects, vanilla
pcx shader, adaptive shader, adaptive shader with direc-
tional light, and neural rendering with standard layer (intro-
duced in section 4.3 are tested. Results are shown in Table
2.

Outputs show that neural rendering realized by Baracuda
[37] is a huge bottleneck for run-time speed in VR render-
ing. Comparatively, each shader runs fluently, even with a
stress test of 30 dynamic and static point clouds combined.

Scene static dynamic 30 mixed
Vanilla Pcx 120 120 83
Adaptive shader 120 120 60
Neural rendering 17 15 7.1

Table 2. Frame rate comparison of different shader and neural ren-
dering. Adaptive shader has the automatic point size, and Neural
rendering runs on the output of adaptive shader.

Figure 6. Qualitative results of different shader

4.2.2 Visual comparison

For the ease of visualisation, We test our shader for four hu-
man point clouds in a different Unity project [9]. In Figure
6 the baseline result is the raw PLY binary little-endian for-
mat file rendered by Pcx. The left four columns are screen-
shots of same objects with closer camera-to-object distance
as the right four columns. The second row shows our shader
output without lighting information and Blinn-Phong shad-
ing. The third row shows our shader with some prelimi-
nary view-dependent shading information. In Blinn-Phong
shading, vertex normal is important in deciding the shading
color. Since the vertex normals of point cloud Humbi(the
first and fifth column) are calculated from the nearest neigh-
bors and are not stable, noticeable artifacts in this point
cloud are present. Overall, our adaptive shader can render
human point cloud well both close and far.

4.3. Neural Rendering

In this section will discuss some quantitative and qualita-
tive results of our model that led to our choice of parameter
and loss function. The baseline we compare our results to
are the input images from our dataset, the metrics are always
computed in regard to the ground truth of the corresponding
images in the dataset.
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Figure 7. Qualitative results of different loss functions used while
training.

Figure 8. Qualitative results of our method.

Figure 9. Screenshots captured directly from the virtual reality
device. A) shows the rendering of only one person in the scene.
B) shows a scene containing several different persons. C) Shows
the result of a person model not contained in the training set.

4.3.1 Quantitative Results

For comparison of different loss functions in the model we
use following metrics: L1, SSIM [45], LPIPS [48], VGG
[30], NPBG [4]. To get a better comparison, we trained dif-
ferent models using a combination of the mentioned metrics
directly as losses. The results are shown in Table 3. Our
chosen loss function has the best evaluation with the LPIPS
and VGG metric. From the results we see that a combina-
tion of VGG and LPIPS complement each other, whereas
that is not necessary the case for LPIPS and NPBG.

4.3.2 Qualitative Results

Qualitative result of different loss functions are shown in
Figure 7. From our evaluations, a model based on an LPIPS

Figure 10. Input, output and ground truth of our architecture where
some layers have been removed.

loss preserved the most details and had very saturated col-
ors, whereas results based on the NPBG loss looked a bit
pale. Simpler factors such as L1 and SSIM seem to favor
features like color, but the results were often oversaturated.
From the discussion in [48] and our own findings, we con-
clude that the LPIPS metric is the decisive factor for our
model.

Outputs of our validation sets showed that the combina-
tion of VGG and LPIPS comes the closest to the ground
thruth. The quantitative and qualitative evaluations seem
to agree that a combination of LPIPS and VGG yields the
perceptually best results, as shown in Table 3 and Figure 7.

The output of the complete pipeline can be seen in Figure
8 and Figure 9. We not only show that our pipeline can
process and render one person from a sparse point cloud,
but the scene can also contain several dynamic point clouds.
We tested it with up to 30 persons in the same scene, and it
worked as intended, see Figure 9 B).

4.3.3 Ablation Study

Data augmentations played a big part with our initial
dataset when we used only constant depth to the object.
Without augmentations, we found that the trained model
was not robust to the different depth changes when walking
around in the virtual space. However, with the new dataset
and more training data, we found that augmentations be-
came irrelevant for our test cases.

Shallower Architecture. To make our model compacter
we tried to remove the last down convolution and the corre-
sponding up convolution, see Figure 3 the blue block with
32 output channels and the green block with 16 output chan-
nels. It still yielded good results, as seen in Figure 10. How-
ever, this does not make any real difference on the perfor-
mance since the main bottleneck is at the first convolution
layer. Removing other parts of the network architecture did
not yield usable results.

Generalization. Our model was only trained on static
scenes, i.e. different persons kept the same pose. When
trying it out on the VR device, the model did not have
any problems processing dynamic scenes containing sev-
eral persons as seen in Figure 9 B). Even when it faced a
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Losses L1 ↓ 1− SSIM ↓ LPIPS ↓ V GG ↓ NPBG ↓
Baseline 0.0112 0.0728 0.0656 0.0073 0.6697
L1 + SSIM 0.0152 0.0412 0.0308 0.0059 0.7592
L1 + SSIM + VGG 0.0108 0.0450 0.0520 0.0062 0.7005
VGG 0.0132 0.0488 0.0409 0.0057 0.6043
LPIPS 0.0137 0.0537 0.0342 0.0069 0.7670
LPIPS + NPBG 0.0214 0.0556 0.0502 0.0064 0.6388
LPIPS + VGG 0.0121 0.0459 0.0277 0.0057 0.6367
LPIPS + VGG + NPBG 0.0156 0.0514 0.0397 0.0060 0.6003
ALL 0.0156 0.0538 0.0519 0.0066 0.6443

Table 3. Metric evaluation of different loss functions. All models are trained for 100 epochs on the full training dataset. The metric scores
are averaged over 120 unseen image pairs from the dataset.

completely new person it managed to produce good results
as seen in Figure 8, second from left, and Figure 9 C).

4.4. Failure Cases

We observed some bleeding effects. During the genera-
tion of the input image, dark pixels from the cloth or hair,
that are occluded in the real world, shined through. The
model used this information and made the rendered skin and
clothes darker than they actually are.

5. Conclusion
In this project, we develop a point-based neural human

rendering pipeline in a real-time VR setting. Two enhance-
ment modules, our adaptive point cloud shader and neu-
ral rendering module through Barracuda, are introduced to
achieve the photorealistic rendered results from sparse 3D
point cloud input. During the experiment, we conducted ex-
tensive studies on our adaptive shader’s performance, differ-
ent losses, and data augmentation for neural rendering. In
addition, we test the efficiency of our pipeline for building
on both the laptop platform and the native Oculus platform.

In the current data generation pipeline, there still exists
a small inconsistency between the training data (from Py-
torch3D) and the actual renderer input (from Unity). One
potential future work is to improve the rendering technique
and point cloud generation pipeline for training data to pre-
vent the problem of bleeding and transparency. Regard-
ing the model aspect, our current model is trained on a
small dataset with limited network capacity. For the next
step, we can explore better hardware-friendly architectures
with larger capacity and train on the large-scale dataset of
human-specific and general point cloud scenes.

Another interesting direction worth exploring is leverag-
ing the shader’s parallelism in Unity for efficient compu-
tation. In addition to the automatic point size rendering,
the shader can support more complex operations such as
the forward pass of an MLP network. Hence, it is possi-

ble to move the computation of neural rendering from the
post-processing stage to the rendering stage. By precom-
puting the per-point (neural) features and defining the net-
work inference operation accordingly in the custom shader,
one may achieve a much faster neural rendering speed than
the current Barracuda implementation.
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