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Abstract

State-of-the-art Structure from Motion algorithms such
as COLMAP are highly robust in reconstruction but are
slow and often don’t scale well. This makes them unsuitable
for long video data. On the other hand, SLAM systems can
process videos (sequential images) in real-time but fall be-
hind COLMAP in map quality. The goal of this project is to
combine the best of both worlds to obtain a fast, robust and
scalable SLAM system. We demonstrate that we partially
achieved our goals by utilizing components of COLMAP
and ideas from ORB-SLAM. The quality of our map, how-
ever, is not yet comparable with the state-of-the-art.

1. Introduction

Simultaneous localization and mapping (SLAM) algo-
rithms have numerous use cases from robotics to XR appli-
cations. They work by generating a map, often from some
form of visual data, and localize that sensor as it moves
through an environment. This results in a map of the tra-
versed environment as well as the path that the sensor took.
This approach is often quite good at positioning the sensor
in a 3D space as well as running quickly, in near real-time,
and efficiently. The downside however, is that the generated
maps often lack robust details. Structure from motion (SfM)
algorithms on the other hand generate very detailed maps,
however they can be quite cumbersome. One of the leading
structure from motion algorithms, COLMAP [16], was de-
signed to process images from the internet to reconstruction
detailed structures. While this allowed for reconstruction
that was robust to different camera properties and types, it
meant massive correspondence graphs needed to be created.
This can result in very long processing time as well as large
memory requirements.

This work aims to combine the efficient sequential track-
ing of SLAM systems with the robust reconstruction capa-
bilities of COLMAP. To do so we utilize the Python bind-
ings, pyCOLMAP [6], and our own SLAM pipeline with in-

spiration from ORB-SLAM [4]. While these systems indi-
vidually have the functionality that we desire, this pipeline
aims to combine the robust reconstruction and triangulation
of COLMAP with the benefits of sequential data processing
from SLAM. In this way the system can keep processing
time and memory low for each additional keyframe, while
building up the COLMAP reconstruction.

2. Related Work

Structure from Motion (SfM) is the process of recon-
structing a 3D structure from a series of images from dif-
ferent viewpoints. There exists many types of SfM systems
such as incremental, hierarchical, and global approaches.
In this project we are most interested with one of the most
popular SfM systems, COLMAP [16], which uses the in-
cremental strategy.

In terms of performance, COLMAP works better on av-
erage when compared against other SfM methods and has
gained widespread attention since it’s open-source release
in 2016. It has been shown to produce 3D structures with
superior robustness, completeness, and accuracy, compared
to previous state-of-the-art systems. However, SfM systems
are not designed to work specifically on video data and thus
we cannot leverage their benefits for such datasets feasi-
bly. In our work, we restructure the COLMAP pipeline to
make it work like a SLAM system. Figure 1 illustrates the
pipeline.

Simultaneous Localization and Mapping (SLAM) can
be viewed as a specific case of the SfM problem. It consists
of estimating a map of the environment as well as local-
izing the agent which is moving through this environment.
SLAM is a fundamental problem in robotics, providing cru-
cial information for autonomous navigation of cars, drones,
and consumer robots.

Our work is most interested with the subset of SLAM al-
gorithms that take only monocular camera images as input.
There are other methods that utilize various other sensors
like GPS, IMU and depth. One of the most popular and
successful feature-based SLAM algorithms is ORB-SLAM



[9, 10, 4].

In our work, we only took a few ideas from ORB-SLAM
such as their keyframe insertion methods, and built our own
SLAM system using the components of COLMAP. The
most important difference in our keyframe decisions is that
we include the optical flow constraint (See section 3.2). Our
system performs all processing on a single thread and uses
a separate thread only for the purpose of visualization (See
Section 3.7), and is overall much simpler than ORB-SLAM.
Moreover, we did not implement loop closure.

Feature Detection and Matching techniques can be
divided into traditional and deep learning-based methods.
The traditional detectors considered in our project are SIFT
[8] and ORB [12]. As its name suggests, SIFT is scale in-
variant, but it is not always suitable for SLAM-like systems
because it is not real-time. ORB builds on the well-known
FAST keypoint detector [11] and the BRIEF descriptor [3],
which have good performance and work in real-time. This
makes ORB a good fit for SLAM and has been successfully
employed in state-of-the-art SLAM algorithms like ORB-
SLAM [9].

However, such traditional methods often fail to work in
the presence of noise, and can sometimes return clustered
keypoints which can hurt homography estimation. Various
machine learning and deep-learning based methods have re-
cently gained attention because of superior improvement in
the quality of detected feature points and their descriptors.
The main reason for this improvement is the replacement of
handcrafted extractors with extremely powerful and expres-
sive neural networks. In our project we are most interested
in SuperPoint [5].

Typically, descriptors are matched with a Nearest Neigh-
bour (NN) search. This method gives good results and is
suitable for real-time applications. Recently, more power-
ful deep learning-based matching techniques have started
replacing the simple NN matchers. SuperGlue [14] is one
recent work that we are most interested in. It performs con-
text aggregation, matching and filtering in a single end-to-
end architecture and has been shown to provide extremely
high quality matches. The downside, however, is that it
consumes much more time than simple methods like NN
matching. In our project, we work with SuperPoint + Su-
perGlue and ORB + NN.

3. Method

We present an offline SLAM pipeline built on COLMAP
a SfM system. Since SLAM and SfM try to solve sim-
ilar questions, we can reuse some main components of
COLMAP. This includes the Reconstruction object that
stores the map and all its relevant information, the corre-
spondence graph for 2D correspondences between images
and the Triangulator object. An overview of the pipeline is
depicted in Figure 1.

3.1. Feature Detection and Matching

Our system is built with two feature detectors and two
matchers.

The first is ORB detector which is available in the
OpenCV library. We couple this with Nearest Neighbour
matching where the distances are computed using the Ham-
ming Norm. This is a suitable norm because the ORB de-
scriptors are vectors containing binary values.

The second detector we used is the SuperPoint detector,
which is publicly available ! along with pretrained weights.
The features are then matched using the SuperGlue network
which is also available in the hloc library [13].

3.2. Optical Flow Estimation

We estimate flow between two frames with the 2D cor-
respondences found in the previous step. We work here
with 2D images and therefore this is an ill posed problem
since the movements are in 3D space. Given image point
p1 = (x1,x2) in the first image and po = (1, 22) in the
second image we estimate the flow between them as fol-
lows:

flOw(pl,pQ) — <‘T1f;x2, ylf;y2|>

where f = (fs, fy) is the focal length of the camera. We
divide through the focal length to factor in different cam-
eras.

For the final flow value we take the median of all points
and sum the two dimensions up. The flow value needs to
exceed a threshold when adding a new keyframe. This helps
us filter out image pairs that have a small flow and therefore
baseline. Our method fails when there is only rotation or
the feature matcher produced too many outliers.

3.3. Map Initialization

An accurate map initialization is vital [9]. Only if the
initial image pair has a good pose estimation, a point accu-
rate reconstruction can be made and absolute poses of new
frames can be estimated. The initialization is based on two
frames chosen from the beginning of the video where we
consider only the first N frames, IV can be chosen arbitrar-
ily by the user. The features in a frame get detected with the
chosen detector, and then we exhaustively match the frame
with all the other N — 1 frames.

Similar to COLMAP we select our first image as the
frame that has the most correspondences to the other
frames. Based on the chosen image, we try to find a good
second image to start our map. The second image should
have a lot of correspondences to the first as COLMAP must
succeed in estimating the relative pose between the images
and the motion between the images needs to be large enough

Uhttps://github.com/cvg/Hierarchical-Localization
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Figure 1. Overview of the SLAM pipeline. In the bottom left corner, i
indicate the use of COLMAPs components from our pipeline. After M

n blue, are the used COLMAP components. The small blue arrows
ap Initialization we sequentially look at every frame and decide if it

can be used as our next keyframe. In parallel we visualize the map and the last keyframe compared to the current frame.

as discussed before. COLMAP ‘s Triangulator object is
used to triangulate map points from these two images if all
mentioned conditions hold. Afterwards, we use global bun-
dle adjustment and filter out inaccurate map points. If there
are enough map points, we continue, otherwise we try out
another image pair and repeat the process.

The choice of N is dependent on the frame rate, the
number of trackable features in a frame, and the movement
speed and rotation of the camera. N should be high enough
to capture a sequence that provides enough movement lead-
ing to a wide baseline between poses and some good fea-
tures to track and match.

3.4. Next Keyframe Selection

Inspired by the keyframe-based approach in ORB-
SLAM, our work also uses keyframes although with dif-
ferent criteria in the selection process. It is crucial to cor-
rectly decide which frames become keyframes and which
ones are discarded as this has a significant effect on the fi-
nal reconstruction. Poor keyframe selections can gradually
accumulate errors and eventually result in a low quality re-
construction. To insert a keyframe, two conditions must be
met:

1) The median of all the optical flow constraint values in
the current image must be above 0.05 (see Section 3.2)

2) Current frame tracks at least 50 points. In other words,
there must be at least 50 matches between the current image
and the last registered keyframe.

Condition 1 ensures sufficient parallax which will lead
to lower uncertainties in the triangulation. This also acts
as a proxy for motion estimation (assuming there is no ro-
tation). We chose a median score here so that outliers in
the matching cannot significantly affect the final score for
this image. Outliers are likely to have very high disparity,
and thus could have an unwanted effect on the score for the
image.

Condition 2 ensures that we have a good tracking.

The limitation with our keyframe selection is that im-
ages with pure rotation will be selected as keyframes and
triangulation will be attempted. Handling such degenerate

rotation-only camera motion is a challenge that is inherent
to visual monocular SLAM.

3.5. Registration and Triangulation

For registering a new keyframe and triangulating it, we
heavily rely on COLMAP ’s functionality. After registra-
tion of the new keyframe the corresponding image is trian-
gulated in the map. When we triangulate it, 3D map points
get created based on 2D image correspondences to the pre-
vious keyframes. We proceed with a step of filtering and
a check if the keyframe has at least 50 map points. If the
check succeeds, we move on to the optimization step, oth-
erwise we deregister it and start over with selecting a new
keyframe.

3.6. Bundle Adjustment

During bundle adjustment optimization, the reprojection
error gets minimized by refining camera parameters and
point parameters jointly [16, 9]. Whenever a new keyframe
gets successfully registered, we either optimize a small part
of the map with local BA or the whole map with global BA,
depending on how much the map grew since the last global
BA step. During the optimization we fix some camera pa-
rameters as seen in [16] as this helps for convergence. In
local BA, we find at most six keyframes that have the high-
est correspondences to the current keyframe.

The actual minimization problem gets solved with Ceres
[1], where we use corresponding Python bindings [15]. For
optimization purposes we solve problems with a small num-
ber of cameras with a dense Schur method [7] and ones with
more cameras with an iterative approach [2] as discussed in
[16].

After the optimization we normalize the map, merge and
complete tracks and filter out points that have a large repro-
jection error. The normalization helps to improve numerical
stability of the BA algorithm [16]. The merged and com-
pleted tracks make the map more accurate and the filtering
gets rid of points that could otherwise be used to inaccu-
rately estimate absolute poses of coming frames.



Figure 2. Top: Reconstruction view of the main window showing the Frieburg desk data. Bottom: Frame viewer window with the last

registered keyframe (left), current frame (center) and summary (right)

3.7. Visualization
3.7.1 Reconstruction View

A majority of the primary viewer window, top of Figure 2,
shows the reconstructed points from the pipeline and the
estimated camera path through those points. This render-
ing, as with the GUI, is created using Open3D [17]. We
first use COLMAP to color the points based on their images
and render the points as a point cloud in the viewer. For the
cameras, we visualize a frustum based on the ratio of the im-
age’s dimension that is scaled by a user-defined scale value.
Each camera’s frustum is colored based on recency, with
the first being green and the last being red. Additionally,
we show a line through the cameras, again colored from
green to red, to show the path the camera follows.

3.7.2 Frame View

The application spawns a second window, bottom of Figure
2, to visualize the frames as they are being processed. In
this view we show the last registered keyframe along with
its ID on the left side. In the center, as each frame is be-
ing processed and undergoes keyframe selection it is visu-
alized with the optical flow lines (in blue) as well as the
optical flow score and correspondence count. If these sur-
pass the required threshold the image is registered as the
next keyframe and the main viewer is updated with the new
points and camera. In order to visualize this processing,
a per keyframe callback is used to pass the image updates

back to the main render thread from the pipeline thread. On
the right side of this panel we show the summary of the re-
construction up until that point, this allows us to keep track
of changes during each registration.

3.7.3 Settings

On the right side of the reconstruction window is a sidebar
with various settings. At the top of the side bar is an op-
tion to export or load an old reconstruction for visualization
and analysis. Below this are the pre-reconstruction settings
shown in Figure 3 on the left. Amongst these settings are
options to change the data/output directories, data process-
ing parameters, and the feature matchers and extractors.

As some datasets have either a high frame rate or very
minimal motion between frames we included a frame skip
slider. This allows the user to only load every s frames in the
raw data. Although optical flow will dynamically check for
motion between frames while the pipeline runs, this option
helps decrease memory consumption for long datasets. The
second slider also helps reduce memory and excess image
processing on larger datasets by allowing the user to only
process a subsection of the data. The slider sets the maxi-
mum number of frames to process, which is again helpful
if the user has issues with memory consumption. The max
value of this slider is automatically updated based on the
dataset selected and the number of frames to skip.

For the reconstruction itself, we have a slider to change
the number of images to consider as part of initialization.
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Figure 3. Left: Sidebar of the reconstruction window showing var-
ious pre-reconstruction settings. Right: Sidebar with the visual-
ization settings.

As mentioned in Section 3.3 a good map initialization is
crucial for a successful reconstruction and triangulation.
Below this setting is a slider for the optical flow threshold.
Increasing this value increases the amount of motion needed
before an image can be considered as a keyframe. Next are
drop down menus to select the feature extractor and feature
matcher for the pipeline, presently SuperPoint and ORB for
the extractor and SuperGlue and Nearest Neighbors for the
matcher. Once the final configuration of the pipeline is set,
the "Run” button can be pressed which starts the pipeline in
a separate thread.

Once a reconstruction is complete, the user can adjust
the visualization settings as shown in Figure 3 on the right.
The first of these settings is to change the background color
of the point visualizer for better contrast. Below this are
two toggle boxes to enable or disable the camera path and
the cameras themselves. For analysis of the reconstruction
we also included a track slider. The value in the slider cor-
responds to the id of a 3D point, by selecting a value greater
than -1, the visualizer will draw a line from the selected
point to all cameras that tracked this point. There are also
sliders to scale the camera frustum and the size of the 3D
points as well as a "Reset Camera” button which realigns
the viewer camera based on the reconstruction data. The
last two settings in the visualization settings allows clipping
of 3D data to points, cameras, and tracks that are between a
certain start and end image. This again allows for analysis

on when certain points are introduced and how the recon-
struction has changed over time.

4. Experiments

This section is divided into 3 parts; in 4.1 we justify the
choice of datasets and explain the criteria for choice, in 4.2
we perform evaluations on some of the datasets and compar-
isons to state-of-art systems, in 4.3 we provide an ablation
study which deals with optimizing hyperparameters used in
reconstruction settings finally, in 4.4 we provide some re-
construction examples.

4.1. Data sets

For the choice of datasets a few factors were taken into
consideration:

* Easy evaluation - availability of metrics for our
pipeline to compare to state-of-the-art SLAM systems

* Variability of motion - minor movement and dynamic
sequences recorded while walking or driving

* Variability of setting - indoor and outdoor sequences

Consequentially, 5 representative datasets were chosen, 3
indoor static sequences and 2 outdoor dynamic sequences
filmed while driving. For the static sequences an online
evaluation tool with ground truth is provided so that direct
assessment of our method and respective comparison with
state-of-art was a straightforward task. Indoor sequences
fri_rgb, fr2_rgb and frl_desk were chosen from a collec-
tion of RGB-D datasets?, and include the intrinsic camera
parameters. For the 2 outdoor sequences, images were ex-

tracted from the videos test_kitti984.mp4 and test_ohio.mp4
3

4.2. Evaluation metric

In table 1, our system is compared to other SLAM sys-
tems in terms of RMSE error between estimated poses and
ground truth. The following set of hyperparameters was
used: Number of frames to skip : 2, Max frames for ini-
tialization : 20, Optical flow threshold: 0.05.

RMSE [cm] frlxyz | fr2_xyz | frl_desk
ORB-SLAM 0.90 0.30 1.69
PTAM 1.15 0.20 -
RGB-D SLAM 1.34 2.61 2.58
Ours 10.93 0.26 19.57

Table 1. Comparison of our system to state-of-the-art systems

Zhttps://vision.in.tum.de/data/datasets/rgbd-dataset
3https://github.com/geohot/twitchslam/tree/master/videos



ORB + SuperPoint +
NN SuperGlue
Initialization [sec] 1.3 4.7
Frame registration [sec] 0.47 1.08
3D points per image 306 337
Reprojection error 0.7550 0.6512

Table 2. Comparison of performance for different extrac-
tor/matcher. The Initialization is per frame.

Furthermore, a comparison of system performance
with different extractors/matchers was conducted. In ta-
ble 2 results are shown for ORB+NN and then Super-
Point+SuperGlue respectively. Additionally, the execution
time of specific steps is provided in order to highlight im-
pact of feature processing on their execution time and re-
construction quality. As SuperPoint+SuperGlue outper-
formed the ORB system it is used for evaluation and shown
in Figure 4 for fr2_rgb.

|— 0.367

-0.199

09
08
0.7

06

y (m)

0.5

04

03

-0.030

1.7) 14

Figure 4. Evaluation of fr2_rgb

4.3. Ablation study

Analysis of the affect of hyperparameters changing on
reconstruction quality in terms of RMSE and reprojection
error was conducted. This was run with fr2_rgb (first 1
minute, 2000 frames) as it performed best. In Table 3 the
results are presented, where in each row the value of 1 pa-
rameter was being changed while others were kept the same
as Section 4.2 (frame skip: 2, initialization size: 20, flow
threshold: 0.05).

Frames skip 2 5 10
0.095 | 0.098 0.15

Frames for init 10 20 40
0.115 | 0.095 | 0.096

OF threshold 0.02 0.05 0.1
0.11 | 0.0955 | 0.097

Table 3. RMSE[cm] for varying frame skips, initialization size and
optical flow

4.4. Reconstruction examples

Apart from numerical results, 2 samples of dynamic re-
constructions (Figure 5) are provided. For these sequences
ground truths weren’t available, thus we can only visu-
ally evaluate its veracity. Videos of the reconstructions for
kitti984.mp4*, fr1_desk’ and fr2_xyz°® are available online.

Figure 5. Reconstruction of test kitti984.mp4 (top) and
test_ohio.mp4 (bottom).

5. Conclusion

This work aimed at restructuring a state-of-the-art SfM
method into an efficient and robust SLAM pipeline which
was partially achieved. Core COLMAP functionalities are
utilized as the foundation of our system, while a few nov-
elties are incorporated into the usual SLAM pipeline to im-
prove robustness and overall accuracy. Still, on evaluated
datasets it is obvious that our system is not robust enough
as it matches or under performs existing SLAM systems,
and can generate poor reconstructions. However, this paper
presents a good starting point as well as a development tool
that provides plenty of visualization options for debugging
and thorough analysis.

6. Contributions of team members

e Markus: Map Initialization; Registration, Triangula-
tion and Bundle Adjustment; Main Loop of pipeline.

e Alan: Keyframe selection and registration; Optical
Flow; Visualization; General development and testing

* Vukasin: Development of general pipeline; Keyframe
selection and registration; Datasets selection and eval-
uation; Ablation study.

e Maximum: Open3D visualization; Threading for re-
construction; Spatial evaluation.

“https://youtu.be/EojVGsfVNTs
Shttps://youtu.be/Nt3mHSUF 9g
Shttps://youtu.be/fbRbJeR3u8M
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