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Abstract—Sentiment classification is about the categorization
of natural language by its underlying attitude. In this work, we
present a number of approaches to solve this task specifically
for tweet messages. Mainly, we explore different deep learning
models, among them state-of-the-art Transformers and their
combinations in different ensemble methods. Our best model
was an ensemble of Transformer-based architectures and
achieved a validation accuracy of 0.922.

I. INTRODUCTION

The ability to understand the underlying sentiment in a
person’s speech is not only useful in daily social interactions,
but also allows us to evaluate the things we offer – such
as products, services or social policies. In the past decade,
social media has been established as one of he leading
means of large-scale human communication – Twitter being
on the forefront of this revolution [1]. This is just as true
for opinions on goods and services as it is for personal
exchange. It is clear when considering these facts that it has
become ever more important for companies and governments
to be able to efficiently extract insights about the reception
of their own products or policies from these large bodies of
public text.

In this work, we present a general-purpose approach
to the classification of tweets (Twitter posts) according to
their sentiment. We do this through the use of state-of-the-
art (SOTA), fine-tuned large language models (LLMs). By
training our models on a dataset that is not restricted to
any specific topic, we retain the option to filter tweets and
similar messages by use cases later and then analyse the
overall sentiment towards these use cases.

Our contributions are the following:
1) A comprehensive evaluation of various basic methods

and SOTA pre-trained models for the given task.
2) An analysis of the effectiveness of three different

ensemble approaches.

II. RELATED WORK

The field of natural language processing (NLP) has gained
popularity in recent years as the feasibility of large language
models (LLMs) has significantly increased due to the rapid
growth in commercially available GPU processing power
[2].

*Equal contribution

LLMs refer to a class of deep learning models such as
OpenAI’s GPT-3 [3] that attempt to solve the tasks of natural
language comprehension and transformation. Recently, the
majority of noteworthy breakthroughs in this field has been
based on the Transformer architecture [4]. Specifically, the
BERT platform [5] is responsible for a plethora of SOTA
language models, such as RoBERTa [6] and DistilBERT [7]
(see [8] for more).

While LLMs can in principle be trained to handle almost
any type of language and content (even programming lan-
guages; see [9]), we typically do not train them from scratch.
Instead, we use a technique known as transfer learning or
few-shot learning (see [10]) in order to adapt the publicly
available pre-trained LLMs to our problem. We take the
aforementioned pre-trained models from Huggingface.

III. OUR METHOD

We used a variety of methods and models in our attempt
to solve the sentiment analysis problem. In this section, we
lead through the various explored approaches and outline
our path towards the best-performing method.

See section IV for a quantitative comparison and discus-
sion of each model’s performance.

Dataset: Our dataset consists of 2.5 million tweets
which are split by sentiment: either positive or negative
(1.25 million each). Each tweet was sanitized, replacing all
personal information and hyperlinks with standardized tags.
All text was also converted to be lowercase.

This dataset provided multiple challenges. Firstly, it is
a small dataset for LLMs1. Secondly, the language used
in tweets is often very informal and may contain spelling
errors, thus many pre-trained word embeddings may not
know what to do with those words. Thirdly, the fact that
casing was removed also means that valuable information
has been lost. Finally, it contains certain tweets multiple
times. We found removing the duplicates to not bring any
advantage. Thus, for the remainder of this work we work
with the unmodified dataset. The evaluation of the effect of
the duplicates is in section VI-A in the appendix.

1For example, the BERTweet model was trained on over 850 million
tweets [11].

https://twitter.com/
https://huggingface.co/


Figure 1. Overview of our RNN pipeline. Several RNN cells can be
stacked after each other, denoted here by N . In our final model we set
N = 2.

A. Baselines

We first attempted to solve the problem at hand with
well-known and rather dated NLP approaches. In particu-
lar, we started off with bag-of-words and term frequency-
inverse document frequency based approaches, where we
used either Support Vector Machines or Logistic Regression.
We also evaluated GloVe [12] and FastText embeddings. In
comparison to models we explore in the following sections,
the performance of these approaches is inconsequential, thus
we omit further detail about these here and instead refer the
reader to section VI-C in the appendix.

B. Recurrent Neural Networks

Our second set of approaches is based on recurrent neural
networks (RNNs). We apply the recurrent nature of the RNN
cell on an embedding of the input sentence to learn the
semantic meaning of the words and their relationships to
each other in the sentence. An overview of the architecture is
shown in figure 1. Again, we found the performance of these
approaches to be inconsequential, so we refer the reader to
section VI-B in the appendix for an in depth discussion of
our architecture and its performance.

C. Transformers

As Transformer-based architectures have dominated NLP
– among many other areas of deep learning – in recent years,
we explored their performance on our particular task as well.

One of the main challenges with this type of model is
that it is extremely data-hungry. As such, we apply transfer
learning to adapt and fine-tune pre-trained models to the
task at hand. To do this, we compare the performance of a
large variety of different pre-trained Transformer models on
our task. We selected these models based on the following

criteria: pre-trained on English text, uncased (agnostic to
capitalization) and pre-trained on short and informal pieces
of text.

We list the selected Transformer models here:
• Bert base model [13]
• DistilBERT base model [14]
• DistilBERT SST 2 (DistilBERT fine-tuned on SST-2)
• BERTweet Base (Based on RoBERTa [6]) [11]
• BERTweet Large (Based on RoBERTa [6]) [11]
• Bert Twitter Roberta Base [15]
• XLNet Base[16]
• Bart Base [17]
• XtremeDistilTransformers (l6-h256 checkpoint) [18]
The BERTweet and Twitter RoBERTa models deserve a

special mention here, due to the datasets they were pre-
trained on: The language is English and the contents are
actual tweets. Consequently, they do not need to re-learn
embeddings or semantic structures, but can be trained for
our specific task quite effectively, using only a few epochs
on a relatively small dataset.

D. Ensembles

The main idea behind the widely successful approach
of ensemble learning is to increase generalization through
the combination of multiple so-called base models, all of
which must be able to solve the learning task on their
own [19]. By combining their subsequently meaningful
individual predictions, weak points of the base models may
be ”evened out”. We evaluated three such approaches.

1) Majority Voting: In the most straightforward ensemble
method for binary classification, one takes an odd number of
independently trained models (we use 3 in our experiments)
and lets them vote on what the output should be for each
data point. Due to the odd number, there will always be a
winner.

In order to determine interesting combinations of mod-
els, we measured the agreement between 8 of our best-
performing base models (see figure 2). Our thinking is
that less overall agreement should point to weak points
in the participating models, which may be patched up by
combining them. The reader is referred to section IV-E for
the performance results of 8 such interesting combinations
and to section VI-H in the appendix for the exact reasoning
behind their selection.

2) Bagging: Bagging (short for ”bootstrap aggregat-
ing”) [20] is a special form of the majority voting approach
discussed in section III-D1. While we talk about combining
different model types in the previous section, bagging deals
with combinations of multiple models of the same type that
are trained on varying datasets. These variations of the orig-
inal dataset are obtained through bootstrap sampling [21].

We selected the DistilBERT SST [14] and XtremeDis-
tilTransformers [18] models for our bagging experiments.
We refrained from training more models since the results

https://huggingface.co/bert-base-uncased
https://huggingface.co/distilbert-base-uncased
https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english
https://huggingface.co/vinai/bertweet-base
https://huggingface.co/vinai/bertweet-large
https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest
https://huggingface.co/xlnet-base-cased
https://huggingface.co/facebook/bart-base
https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased


Figure 2. Agreement between a recent version of our highest-performing
base models. Each score is the percentage pi,j ∈ [0, 1] of test-set
predictions that the models i and j agree on.

on these two models suggest that bootstrapping might be
harmful rather than beneficial in this context (see section
IV-F).

3) Stacking: Stacking describes a paradigm of learning
that concerns itself with the intelligent combination of
outputs of pre-trained predictors, rather than with the act of
prediction itself [22]. To this end, it utilizes a so-called ”meta
model”, which is trained to combine the outputs of multiple
base models into the correct final output in a supervised
manner.

We implemented a variation of stacking that trains the
stack of base models and meta model end-to-end, rather than
separately. For the meta model, we used a simple MLP with
only 1 hidden layer.

IV. EVALUATION & DISCUSSION

A. Overview

Model(s) Accuracy ↑ Kaggle ↑ Main technique
Ensemble of 4 models 0.922 0.922 Stacking
BERTweet 0.920 0.920 Transformers
BERTweet B&L, RNN - 0.920 Majority Voting
3x DistilBERT SST 2 - 0.896 Bagging
RNN 0.876 0.874 GRU
TF-IDF SVM 0.855 - Simple Baselines
Official Baseline - 0.804 -

Table I
RESULTS OF OUR BEST PERFORMING MODELS. ROUNDED ACCURACIES

FROM BOTH A VALIDATION SPLIT AND THE KAGGLE LEADERBOARD.

Table IV-A contains the scores of the best-performing
instances of all the different methods described in section
III. We list their respective performances both on a vali-
dation split of 0.5% (if applicable) and the public Kaggle
leaderboard.

It is worth noting that we compare the methods’ perfor-
mances on their validation accuracies wherever possible, as
we know the validation set to be balanced. By contrast, we
do not know anything about the exact structure of the Kaggle
public test set, which could be heavily biased.

B. Non-Transformers

1) Baselines: All our non-SOTA baselines are separated
from our top-performing models by at least one major break-
through in the field of NLP. For this reason, we believe that
the differences in performance need no further explanation.

2) RNN: The RNN model introduced in III-B is not
comparable with transformer-based approaches. However,
with a bit of hyper-parameter tuning, we were able to achieve
a decent accuracy (see VI-B).

C. Transformer-Based Models

Model Accuracy ↑ Kaggle ↑
BERTweet Large 0.920 0.920
BERTweet Base 0.917 0.917
BERT Twitter RoBERTa Base 0.907 0.907
BERT base 0.903 0.902
XLNet Base 0.901 0.899
DistilBERT base 2 0.899 0.892
DistilBERT SST 2 0.898 0.898
Bart Base 0.895 0.893
XtremeDistil Transformers 0.893 0.884

Table II
RESULTS OF THE EVALUATED TRANSFORMER-BASED MODELS.

Transformer models pose a significant problem in train-
ing: They require an enormous amount of resources, even
to merely fine-tune. For this reason, we were not able to
run exhaustive hyper-parameter tuning for them. Instead, we
trained each of them with only slightly varying learning rates
(in the order of 10−6), usually for 24 hours.

Despite these limitations, the strength of Transformer-
based architectures is clear. They vastly outperform all of our
baselines without any hyper-parameter tuning. Table IV-C
contains the performance of all the evaluated Transformer-
based models. Most of these observations are in line with
our expectations; models trained on tweet data performed
significantly better than those that were not. The one surprise
was that despite being a cased model2, XLNet performed
very well.

2A cased model is not agnostic to capitalization. This could be prob-
lematic here since all text in the dataset is lower-case, which means that
any information that stemmed from capitalization was lost and the model
cannot utilize it.



D. BERTweet

The most important aspect of fine tuning BERTweet is
the learning rate, which is far smaller than when training
our RNN models. For a comparison of the learning rates on
the Base model that worked best for us, see table VI-E in the
appendix. A learning rate of 3 · 10−6 showed the best result
for the validation set; a fact which is in line with the findings
in [23]. The differences seem small but were significant for
the Kaggle leaderboard.

This became even more relevant when fine tuning the
BERTweet Large model. Due to its long training time, we
were not able to make a full ablation study for it. An
evaluation of training such a model for several epochs can
be found in section VI-D in the appendix.

E. Majority Voting

Combined Models Kaggle ↑
bertweet-base, bertweet-large, rnn-gru 0.920
bart, bertweet-large, double-twitter-roberta 0.918
bertweet-base, bertweet-large, twitter-roberta 0.918
all MV bases except RNN 0.917
bart, bertweet-large, xlnet 0.914
bart, twitter-roberta, xlnet 0.913
bart, bertweet-large, xtreme-distil 0.912
bertweet-large, rnn-gru, xtreme-distil 0.909

Table III
RESULTS OF ALL SELECTED MAJORITY-VOTING COMBINATIONS.

Table IV-E contains the public Kaggle scores for the
majority votes of the 8 most interesting combinations of
top-performing base models. See sections III-D1 and VI-H
for further information on their selection.

It is clearly visible that all combinations achieve rather
high scores – even the ones containing the RNN model,
which on its own only reaches validation accuracies of
0.876. This seems to confirm our theory that disagreement
between models may be used advantageously.

However, it must also be noted that none of these combi-
nations outperform the best base model (BERTweet Large) in
its properly fine-tuned state. Also, seeing as the top majority-
voting combination is between BERTweet Large, BERTweet
Base and RNN GRU, the former two of which agree quite
heavily, it is plausible that they simply overpowered the
RNN in the voting process. This might additionally explain
the similarity between the performances of this particular
combination and BERTweet Large on its own.

Consequently, we must conclude that majority voting
between different models does not seem to show any distinct
advantages when compared to a SOTA BERT model on its
own.

F. Bagging

For both base-model types outlined in section III-D2, we
trained 3 base models on bootstrapped datasets for 5 epochs.

The DistilBERT SST 2 models reached a Kaggle score of
0.896 when combined, while the XtremeDistilTransformers
models reached 0.880. Since neither of these scores sur-
pass the base models’ individual performances (0.8977 and
0.8836 respectively), we chose not to pursue bagging any
further in the solution of this problem.

We hypothesize that the poor performance stems from the
fact that bootstrapped datasets may be prone to imbalance,
which would lead to an ensemble of too-heavily biased base
models.

One possible way to alleviate this might be to train more
classifiers in the hopes of balancing out the introduced
biases in the final ensemble. Another approach would be to
ensure balance in the bootstrapped datasets through stratified
sampling [24] with repetition.

G. Stacking

We tried three different combinations for our variation on
stacking. The first two were combinations of XtremeDistil-
Transformers and XLNet with Bert Twitter Roberta Base.
But these did not show any improvements compared to
the individual models, with validation accuracies of 0.904
and 0.898. Our final combination and also our final model
combined four different models: XLNet Base, BERTweet
Large, XtremeDistilTransformers and DistilBERT Base. This
reached both a validation accuracy and a public Kaggle score
of 0.922.

While this was our best performing model, two major
caveats apply: We trained this model for almost 3 days
and the performance benefits were very minor. Thus, we
conclude that stacking on this task brings only small im-
provements.

V. SUMMARY

In this work we compared a multitude of deep learning
approaches – both base models and ensembles – as applied
to binary sentiment classification. It is clear from our anal-
ysis that Transformer-based architectures outperform other
approaches by a significant margin. Interestingly, we found
that they not only perform well compared to other models
and learning paradigms (such as SVMs), but also compared
to most ensemble methods that we tried. Specifically, the
method of stacking is the only ensemble method we tried
that was actually competitive. However, it still only outper-
forms our best base model by a very small margin and takes
a multiple of the computational resources required to train
any of the base models.

As for future work: We think it would be beneficial
to explore further combinations of models with some of
our ensemble techniques, in the hopes of identifying a
meaningful consensus that we did not achieve in this work.
Furthermore, some of our ensemble techniques could be
tweaked slightly in order to adapt them better to the problem
at hand.
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VI. APPENDIX

A. Effect of Duplicate Tweets

Dataset Validation Accuracy Public test set accuracy
Full dataset 0.892 0.883
Partial dataset 0.881 0.886

Table IV
COMPARISON OF THE PERFORMANCE OF THE

XTREMEDISTILTRANSFORMER MODEL WHEN TRAINING ON THE FULL
DATASET AND WHEN TRAINING ON A CLEANED DATASET THAT

DOESN’T CONTAIN DUPLICATES.

To evaluate the effect that duplicate tweets in our dataset
had on our models, we decided to run one of these models
in the full dataset and in a dataset in which we had re-
moved all the duplicate tweets (around 122000 positive and
107000 negative tweets). We run the following experiment:
Using the XtremeDistilTransofmers model with the l6-h256
checkpoint [18], we run it on both the unmodified dataset
and the one without duplicates. We use a validation split
of 10% and let it run for 10 epochs. Table VI-A contains
a comparison on both the validation set and on the public
Kaggle score.

On the one hand we observe that in the validation split,
the model trained on the full dataset performs better than the
model trained on the dataset without duplicates. However,
part of this effect can definitely be explained by the fact that
with the duplicate tweets it can occur that the same tweet
was in our training and in our validation set which would
result in an increase in the performance. On the public test
set accuracy, we observe a minor difference between the
two models, with the partial dataset slightly outperforming
the full one. But without knowing more about the makeup
of the public test set and its correct labels, it’s hard to
make any decisions from this. In particular, the dataset
without duplicates is no longer balanced between positive
and negative tweets, which introduces a bias into our model.
It is possible that it is this bias which actually results in
the increase of the score on the public dataset. Due to this
uncertainty and the minor differences in the performance of
the model trained on the different datasets, we opted to work
with the full and unmodified dataset for the remainder of our
evaluation.

B. Recurrent Neural Networks

For many years, RNNs were amongst the best performing
techniques for sentiment analysis. The advantages of RNNs
are that they accept variable input length, leverage infor-
mation over extended time intervals and are well studied
[25], [26]. On the other hand, RNNs can face vanishing
and exploding gradients that can make training unstable. To
combat this problems, different extensions were proposed
such as the Long Short-Term Memory (LSTM) [26] and
Gated recurrent unit (GRU) [25] variants.

Our own RNN architecture is shown in figure 1 and
outlined here. The first step is to represent every word in
the sentence as a value. For this encoding step we use the
tokenizer provided by Hugging Face, namely [15], which
comes with a BERT tokenizer and was pre-trained on tweets.
Afterwards, we train an embedding for the encoded words in
the sentence and use this as the input for our RNN. Since the
RNN computes an output for every embedded input word,
we sum up all the logit outputs of a batch through a masked
sum. A masked sum is used since we pad sentences in the
encoding step to make batch processing easier.

In the final model we use a GRU or LSTM cell and
stack it twice with a dropout probability of 0.2 in between
(to combat overfitting). Additionally, we use a bidirectional
RNN in the hopes of capturing non-sequential dependencies
between the words.

We use a learning rate of 0.001 with Adam [27] as our
optimizer. The full dataset with a validation split of 0.05
was used for training.

The RNN model is a lot smaller than the Transformer-
based ones. Therefore, it was possible to train it completely
from scratch in 5 hours on an NVIDIA GeForce RTX
2080 Ti. Considering that the model was not pretrained on
millions of tweets, it achieved a reasonable accuracy.

Using a GRU or LSTM cell did not make any significant
difference when it comes to the accuracy. The GRU cell
reached the best validation accuracy after 6 epochs whereas
the LSTM cell needed 8 epochs. Afterwards, they both
started to overfit. Using only one cell – without stacking
– did not significantly change the validation accuracy. On
the validation split we were able to achieve an accuracy of
0.877 with a GRU cell and 0.876 with an LSTM cell.

C. Further Baselines

To have additional baselines to compare our model to,
we also implemented and evaluated various other standard
methods for text classification. In particular, we evaluated
the following methods:

1) A logistic regressor using a bag of words vectorizer.
2) A logistic regressor using a Term Frequency and In-

verse document Frequency (TF-IDF) based vectorizer.
3) A support vector machine (with both linear and non-

linear kernels) using a TF-IDF based vectorizer.
4) A small neural network trained using either pretrained

GloVe or FastText embeddings. For this, we tried
out combinations in which the pretrained embeddings
would also be trained or cases in which their embed-
dings were frozen.

5) A RNN using either pretrained GloVe or FastText
embeddings. Same situation applies here again.

For each approach, we trained it using a 0.5% validation
split, which we will use to compare the various models. We
performed a large variety of different runs to tried and find



the best parameters for these. This did indeed increase the
performance our models.

Even with the parameter tuning though, we found that
they performed worse than Transformer-based models that
were not tuned at all. In total we ran and logged over 1000
different runs with various parameters. These were logged
using Weights and Biases, and more detailed information
to each individual run can be found on https://wandb.ai/
the-transponsters/CIL-2022Baselines.

Method Validation Accuracy ↑
TF-IDF Non-Linear SVM 0.855
FastText with small NN 0.855
GloVe RNN 0.852
TF-IDF Linear SVM 0.835
TF-IDF logistic regression 0.826
Bag of Words logistic regression 0.822

Table V
RESULTS OF THE VARIOUS BASIC APPROACHES WE PERFORMED

Table VI-C contains an overview of the best performing
variant of all each of the approaches. For both the Bag
of Words and the TF-IDF based approaches, we performed
extensive parameter searches. We did not perform this for
the GloVe based approaches.

For the Bag of Words approach, we found that 10′000
features performed the best. We observed the performance
decreased if we removed stop-words. We also found that
using sklearns cross validation performed better than a
simple parameter search we performed.

For the TF-IDF logistic regression on the other than a
minimum occurrence of 5 and a maximum occurrence of
60% performed the best, with a regularization constant of
2.0. Interestingly, varying the maximum frequency between
0.5 and 0.95 did not bring any major differences here for
the validation accuracy.

For the Linear SVM, we again found a similar situation.
A minimum occurrence of 15 performed the best, while
varying the maximum between 0.6 and 0.95 brought no
significant changes. Again, a regularization constant of 2.0
performed the best. For the non-linear SVM, we tried both
using the Radial Basis Function (RBF) and a polynomial ker-
nel. The RBF kernel performed better. Our best performing
approach had a minimum occurrence of 5 and a maximum
frequency of 0.5, again with a regularization constant of
2.0. Here, varying the maximum frequency had a significant
effect. We also experienced significant over-fitting here, as
for example in the best performing model the accuracy on
the training set was 0.987.

Finally, for the GloVe versions, we unsurprisingly found
the embedding pretrained on tweets to perform the best,
where we further fine-tuned the embedding during the train-
ing. For all combinations, unfrozen embeddings performed
better. While for the RNN, GloVe outperformed FastText,

we found FastText to be better when trained using a small
neural network.

D. Fine Tuning BERTweet for several epochs

Epoch Validation Accuracy Kaggle Leaderboard
1 0.917 0.915
2 0.918 0.914
3 0.913 0.916
4 0.915 0.914
5 0.919 0.914
6 0.917 0.910
7 0.913 0.908

Table VI
ROUNDED RESULTS OF LETTING BERTWEET LARGE FINE TUNE FOR

SEVERAL EPOCHS.

The BERTweet models are memory intensive and espe-
cially BERTweet Large was challenging to fine tune. To fine
tune a BERTweet Large model we used an NVIDIA GeForce
RTX 2080 Ti so that the model would fit on the device.
To find out if fine-tuning it for several epochs leads to an
improvement of the accuracy, we let it run for 120 hours.
We used a batch size of 8, a validation split of 20%, and
a learning rate of 5 · 10−6. Please note that we did not use
any weight decay. An epoch of fine tuning took around 14
hours.

The results can be seen in Table VI-D. From this example
we see that fine-tuning it for several epochs can lead to
an improvement in accuracy on the validation set as well
as on the Kaggle leaderboard. The accuracy on the Kaggle
leaderboard does not seem to always follow the accuracy
on the validation set, but without knowing the makeup of
the public Kaggle leaderboard set, it is hard to reach any
conclusions as to the reason for this. That being said, the
difference in accuracy is not that big. By far the greater
improvement regarding accuracy was achieved when we
used a smaller learning rate instead of training it for more
epochs.

E. BERTweet Learning Rates

Learning Rate Test 1 Test 2 Val. 1 Val. 2
3e-06 0.917 0.917 0.920 0.919
2e-06 0.918 0.915 0.916 0.919
1e-06 0.914 0.915 0.912 0.916

Table VII
ACCURACIES (ROUNDED) OF DIFFERENT LEARNING RATES OF THE
BERTWEET BASE MODEL CONSIDERING FIRST TWO EPOCHS. TEST

CORRESPONDS TO THE ACCURACIES OF THE KAGGLE LEADERBOARD,
VAL. TO THE ACCURACIES OF OUR VALIDATION SET. WE USED A BATCH

SIZE OF 8, A VALIDATION SPLIT OF 0.1%, AND NO WEIGHT DECAY.

https://wandb.ai/the-transponsters/CIL-2022 Baselines
https://wandb.ai/the-transponsters/CIL-2022 Baselines


F. Summing up logits of different models

In our RNN approach we have seen that summing up the
logits of each word worked. Therefore, we tried a similar
approach with the output of different models that correspond
to the whole sentence. We fine-tuned a BERTweet Base and
a Twitter-Roberta model at the same time and summed up
their outputs. After one epoch we achieved an accuracy of
0.915 on the Kaggle leaderboard, whereas a BERTweet Base
model alone achieved an accuracy of 0.916 after one epoch
of fine tuning. Considering the same hyper-parameters we
did not notice any improvements.

G. Separate Models for Sentiment Classes

One idea to increase the accuracy was to use a model for
each label. In this way a fine tuned model could better focus
onto the assigned sentiment label. This means we fine tuned
a pre-trained model for the positive sentiment and one for
the negative at the same time. In our experiments we used
the Twitter-Roberta model twice and achieved an accuracy
of 0.906 on the Kaggle leaderboard after fine tuning it for
one epoch. With the same hyper-parameters using only one
Twitter-Roberta model we achieved an accuracy of 0.907.
Therefore, this did not show any improvement. In addition,
it took at least twice as long.

H. Combination Selection for Majority Voting

Note: For reasons of spacial efficiency, we will use the
indices defined in table VI-H to refer to the 8 base models
in table VI-H.

Model Name Index
bart 1
bertweet-base 2
bertweet-large 3
double-twitter-roberta 4
rnn-gru 5
twitter-roberta 6
xlnet 7
xtreme-distil 8

Table VIII
INDICES FOR OUR MAJORITY-VOTING BASE MODELS.

In order to identify interesting combinations of three
models each, we look to their pairwise agreements p·,· and
compute a three-model agreement score as follows:

pi,j,k = pi,j · pi,k · pj,k. (1)

We did this for all
(
8
3

)
= 56 possible combinations. The

resulting scores are listed in table VI-H.
When considering figure 2, it is clear to see that the

RNN model disagrees the most with all other models. This
explains its prevalence in many of the lowest-score three-
model combinations. However, this does not mean that only
combinations involving the RNN model are interesting. In
fact, one very plausible reason for its disagreement could

Model 1 Model 2 Model 3 Agreement Score ↓
3 5 8 0.7364
5 6 8 0.7384
2 5 8 0.7435
1 5 8 0.7464
4 5 8 0.7485
1 3 5 0.7494
1 5 6 0.7522
5 7 8 0.7524
3 5 7 0.7534
1 2 5 0.7545
3 5 6 0.7564
2 5 7 0.7579
2 5 6 0.7584
5 6 7 0.7584
1 4 5 0.7604
3 4 5 0.7606
2 3 5 0.7619
2 4 5 0.7634
1 5 7 0.7636
4 5 7 0.7654
4 5 6 0.7685
1 3 8 0.8076
1 6 8 0.8084
3 6 8 0.8095
3 7 8 0.8097
6 7 8 0.8128
3 4 8 0.8146
2 6 8 0.8161
1 2 8 0.8175
1 4 8 0.8177
2 7 8 0.8189
4 6 8 0.8208
4 7 8 0.8208
2 3 8 0.8222
2 4 8 0.8222
1 7 8 0.824
1 3 7 0.8378
1 3 6 0.8408
1 6 7 0.8419
3 6 7 0.8432
1 3 4 0.8437
3 4 7 0.8448
1 2 7 0.845
1 2 6 0.8453
2 6 7 0.8469
1 4 7 0.8478
1 2 4 0.8491
2 4 7 0.8494
2 3 7 0.8499
1 2 3 0.8506
1 4 6 0.851
4 6 7 0.8544
3 4 6 0.8641
2 3 4 0.8659
2 4 6 0.8661
2 3 6 0.8664

Table IX
THREE-MODEL AGREEMENT SCORES FOR ALL POSSIBLE
COMBINATIONS OF 3 DIFFERENT MODELS OUT OF OUR 8

MAJORITY-VOTING BASE MODELS.

be that its performance is just not quite on the same level
as the other, Transformer-based models’. For this reason,
we take only two combinations involving the RNN model:
[bertweet-large, rnn-gru, xtreme-distil] (lowest agreement
score) and [bertweet-base, bertweet-large, rnn-gru] (involv-



ing the very-best-performing base models).
The next-lowest agreement score without the RNN is

achieved by [bart, bertweet-large, xtreme-distil]. Further-
more, since quite a lot of combinations following this one
all include the xtreme-distil model, we jump to the next one
that does not: [bart, bertweet-large, xlnet].

In order to incorporate the twitter-roberta model and
its double-variant, we also include [bart, twitter-roberta,
xlnet] and [bart, bertweet-large, double-twitter-roberta] as
the combinations with the respectively next-lowest scores.

Finally, we also take [bertweet-base, bertweet-large,
twitter-roberta], even though it has the highest agreement
score. Our reasoning for this is simply that this particular
combination contains all our best-performing base models.

On top of this, we also evaluate a combination of all 8
base models, except for the RNN (to achieve an odd number
of voters).
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